Mostrar el registro sencillo del ítem
Ensayo preliminar de un sistema de “Biofloc”, en el centro de investigación y producción acuícola Henry Von Prahl – Sabaletas
dc.contributor.advisor | Gómez Cerón, Giovanni Orlando | spa |
dc.contributor.author | Murillo Angulo, Gloricet | spa |
dc.date.accessioned | 2021-06-10T21:16:02Z | |
dc.date.available | 2021-06-10T21:16:02Z | |
dc.date.issued | 2016 | spa |
dc.identifier.uri | https://repositorio.unipacifico.edu.co/handle/unipacifico/425 | |
dc.description | Disponible en formato físico (T ACU 10 2016) | spa |
dc.description.abstract | Una de las alternativas que empieza a incorporarse en los sistemas productivos de la piscicultura es la tecnología (BFT) que se basa en los sistema “Biofloc”, el cual se sustenta en aprovechar la acumulación de residuos de los alimentos, materia orgánica y compuestos inorgánicos tóxicos a través de microorganismos presentes en los medios acuáticos, dando condiciones de dominancia a comunidades autótrofas y heterótrofas. De igual manera, este sistema ha permitido que se disminuya y en algunos casos elimine el recambio de agua, además de disminuir los costos e incrementando los volúmenes de producción por unidad de área. | spa |
dc.description.tableofcontents | 1 INTRODUCCIÓN 1 2 OBJETIVOS 4 2.1 Objetivo General 4 2.2 Objetivos Específicos 4 3. ANTECEDENTES 5 4. MATERIALES Y MÉTODOS 10 4.1 Área de Estudio 10 4.2 Materiales y Equipos 10 4.3 Metodología 10 4.3.1 Armado de Instalaciones 10 4.4 Manejos y muestreos 13 5. RESULTADOS 15 6. DISCUSIÓN 21 CONCLUSIONES 24 BIBLIOGRAFIA 26 ANEXO 33 | spa |
dc.format.extent | 41 p | spa |
dc.publisher | Universidad del Pacífico | spa |
dc.rights | Derechos Reservados - Universidad del Pacifico | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Ensayo preliminar de un sistema de “Biofloc”, en el centro de investigación y producción acuícola Henry Von Prahl – Sabaletas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dcterms.references | Abreu PC, Ballester ELC, Odebrecht C, Wasielesky WJr, Cavalli RO, Granéli W, Anésio AM. 2007. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J Expl Mar Biol Ecol.;347:88–96. | spa |
dcterms.references | Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J.,Huque, S., Salam, M.A.,Azim, M.E. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachuim rosenbergii production in ponds. Aquaculture 280: 117-123. | spa |
dcterms.references | Atencio GV, Pertuz BV, Bru CS, Ayazo GJ. 2013. Curso teórico - práctico tecnología de cultivo biofloc: fundamentos y manejo. Centro de Investigación Piscícola de la Universidad de Córdoba – CINPIC. Montería - Colombia. | spa |
dcterms.references | AUNAP – Autoridad Nacional de Acuicultura y Pesca. 2013. Diagnóstico del estado de la acuicultura en Colombia. Bogotá, Colombia. | spa |
dcterms.references | Avnimelech Y. 2012b. Biofloc Technology – A Pratical Guide Book. The World Aquaculture Society, Baton Rouge, Louisiana, United States. 2. Ed. | spa |
dcterms.references | Avnimelech, Y. 2009. Biofloc technology a practical guide book. Luisiana, World Aquaculture Society. 181p. | spa |
dcterms.references | Avnimelech, Y. 1999. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture 176: 227-235. | spa |
dcterms.references | Avnimelch, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge biofloc technology pons. Aquaculture, 264: 140-147. | spa |
dcterms.references | Azim, M.E., Little, D.C.,Bron, J.E. 2008. Microbial protein production in activated suspension tanks manipulating C: N ration in feed and the implications for fish culture. Biores. Technol. 99: 3590 -3599. | spa |
dcterms.references | Boyd CE, Clay JW. 2002. Evaluation of Belize Aquaculture, Ltd: A Superintensive Shrimp Aquaculture System. Report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment. 17pp. | spa |
dcterms.references | Boyd C, 1998. Pond water aeration systems. Aquac Eng.;18:9-40. | spa |
dcterms.references | Brown, L. 2000. Acuicultura para veterinarios. Producción y clínica de peces. Zaragoza, Acribia. 400 p. | spa |
dcterms.references | Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture.;232:525-537. | spa |
dcterms.references | Coll Morales, J. 1983. Acuicultura marina animal. Madrid, Mundiprensa. 670 p. | spa |
dcterms.references | Collazos LLF y Arias CJA. 2007. Influencia de la temperatura en la sobrevivencia de larvas de Rhamdia sebae c.f. (Siluriformes heptapteridae). Orinoquia.;11(1): 56–62. | spa |
dcterms.references | Crab R, Chielens B, Wille M, Bossier P, Verstraete W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult Res.;41:559–567 | spa |
dcterms.references | Crab, R, Lambert, A, Defoirdt, T, Bossier, P, Verstraete, W. 2010. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J. Appl Microbiol, 109 (5): 1643 – 1649. | spa |
dcterms.references | Craig LB, Andrew JR, John WL, Avnimelech Y. 2012. Biofloc-based Aquaculture Systems. Aquaculture Production Systems, First Edition.Edited by James Tidwell.;12:278-306. | spa |
dcterms.references | Craig S, Helfrich LA. 2002. Understanding Fish Nutrition, Feeds and Feeding (Publication 420–256). Virginia Cooperative Extension, Yorktown (Virginia). 4 pp. | spa |
dcterms.references | De Schryver, P, Crab, R, Defoirdt, T, Boon, N, Verstraete, W. 2008. The basics of biofloc technology: the added value of aquaculture. Aquaculture; 277: 125-137 | spa |
dcterms.references | Ebeling, J.M., Timmons,M.B.,Bisogni, J.J. 2006. Engineering análisis of the stoichiometry of photoautrophic, autotrophic, and heterotrophic renoval of ammonia-nitrogen in aquaculture systems. Aquaculture 257: 346-358. | spa |
dcterms.references | Ekasari J, R Crab & W Verstraete. 2010. Primary nutritionalcontent of bio-flocs cultured with different organic carbonsources and salinity. Hayati Journal of Bioscience 17: 125-130. | spa |
dcterms.references | Ekasari J, Deasy A, Waluyo SH, Bachtiar T, Surawidjaja EH, Bossier P, De Schryver P. 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture.(426-427):105-111. | spa |
dcterms.references | Emerciano, M., Ballester, E., Cavalli, R, Wasielesky, W. 2011. Effect of bioflocs technology on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquacult. Internat. 19:891-901. | spa |
dcterms.references | Emerciano, M, Ballester, E, Cavalli, R, Wasielesky, W. 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis. Aquacult. Res. (43): 447-457. | spa |
dcterms.references | Emerenciano M, Gaxiola G y Cuzon G. 2013. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. INTECH open science_ open minds. Cap 12: 301-327. http://dx.doi.org/10.5772/53902. | spa |
dcterms.references | Emerson K, Russo RC, Lund RE, Thurston RV. 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Can.32:2379-2383 | spa |
dcterms.references | FAO, 2003. Review of the state or World aquaculture. FAO Fisheries Circular No. 886, Rev. 2, Rome. 95pp. | spa |
dcterms.references | FAO. 2006. State of World Aquaculture 2006. Fisheries Technical Paper No500. Roma, FAO, 129p.Disponible en: http://www.fao.org/docrep/013/i1820s/i1820s00.htm. | spa |
dcterms.references | FAO, 2010, El estado mundial de la pesca y acuicultura 2010. Roma, departamento de pesca y acuicultura de la FAO. | spa |
dcterms.references | FAO, 2009. Fishery and Aquaculture Stadistics, Servicios de Estadistica y información, Departamento de pesca y acuicultura, FAO.Rome, 2011.Disponible en: http://www.fao.org/docrep/016/aq187t/aq187t.pdfFecha de consulta: 25 -7-13 | spa |
dcterms.references | Froster, C.F. 1976. Bioflocculation in the activated sludge process. Water. 2: 119-125. Disponible en:http://www.wrc.org.za/Lists/Knowledge%20Hub%20Items/Attachments/617 3/WaterSA_1976_%202_0031_abstract.pdf Fecha de consulta:25-8-12 | spa |
dcterms.references | Ghanekar, A. 2009. How biofloc technology reduces feed and filtration costs in recirculated shrimp nursery systems. Aquacult Asia Pacific 5 (3): 72 – 74. | spa |
dcterms.references | Gutierrez-Wing, M., Malon, F. 2006. Biological filtres in aquaculture: trenes and research directions for freshwater and marine applications. Aquacult. Eng. 34, 3: 163-171. | spa |
dcterms.references | Hari, B., Kuruo, B.M., Varghese, J.T., Scharama, J.W., Verdegem, M.C.S. 2004. Effects of carbohidrate addition on production in extensive shrimp culture system. Aquacult. 241 179-194 | spa |
dcterms.references | Hargreaves JA. 2013. Bioflóc Production Systems for Aquaculture. En: SRAC. Abril,:4503:8-10 | spa |
dcterms.references | Jorand F, Zartarian F, Thomas F, Block J, Bottero J, Villemin G, Urbain V, Manem J. 1995. Chemical and structural (2d) linkage between bacteria within activated-sludge flocs. Water Res.;29(7):1639–1647 | spa |
dcterms.references | Kuhn D, Boardman G, Lawrence A, Marsh L, Flick G. 2009. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture.;296:51-57. | spa |
dcterms.references | Lososrdo, T.M., Wesrerman, P.W. 1994. An análisis of biological. Economic, and engineering factors affecting the cost fish production in recirculating aquaculture systems. J. Words Aquacult. Soc. 25: 193-203. | spa |
dcterms.references | McItosh, P.R. 2000.Changing paradigms in shrimp farming.IV. Low protein feeds and feeding strategies. Global Aquacult. Adv. 3: 44-50. | spa |
dcterms.references | MGAP-DINARA-FAO. 2010. Manual básico de piscicultura en estanques/Uruguay. Dirección Nacional de Recursos Acuáticos. Montevideo. Departamento de Acuicultura. 50 p. | spa |
dcterms.references | Monroy DMC, De Lara AR, Castro MJ, Castro MG y Emerenciano CM. 2013.Composición y abundancia de comunidades microbianas. Rev Biol Mar Oceanogr.48(3):511-520 | spa |
dcterms.references | Moss S. 2002. Dietary importance of microbes and detritus in penaeid shrimp aquaculture, pp.1-18. In: Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems, CS Lee and P. O’Bryen (editors). The World Aquaculture Society, Baton Rouge, Louisisana, USA, 2002. | spa |
dcterms.references | Newman, S, 2011. Understanding biofloc in aquaculture production systems. Aquaculture Asia Pacific Magazine, 7 (2): 25-26. | spa |
dcterms.references | Poli MA, Schveitzer R, Oliveira N. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquacult Eng.;66:17-21. | spa |
dcterms.references | Proença,C. E.M. de., Biiencourt P.R. 1994. Manual de pisciculturía tropical. Brasilia: IBAMA | spa |
dcterms.references | Ray JA, Lotz JM. 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquacult Eng.;63:54–61. | spa |
dcterms.references | Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL. 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture. 310:130–138. | spa |
dcterms.references | Sagratzki CBA, Pereira-Filho M, Bordinhon A, Fonseca FA, Ituassú D, Roubach R. y Ono EA. 2004. Tolerância de juvenis de pirarucuao aumento da concentração de amôniaem ambiente confinado. Pesq Agrop Bras. 39:513-516. | spa |
dcterms.references | Schveitzer R, Arantes R, Costódio PFS, do Espírito Santo CM, Arana LV, Seiffert WQ, Andreatta ER, 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannameiin a tank system operated with no water exchange. Aquacult Eng. 56:59-70. | spa |
dcterms.references | Stickney, R, 2000. Encyclopedia of Aquaculture. New York, Wiley. 988p. | spa |
dcterms.references | Tacon,A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S.,Forster, I.P.,Decamp, O.E. 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Bonne) fed different diets. Aquacult. Nutr. 8: 121-139. | spa |
dcterms.references | Timmons MB, Ebeling JM, Wheaton FW, Sommerfelt ST, Vinci BJ. 2002. Microbial biofloc and protein levels in green tiger shrimp. Recirculating aquaculture systems, 748 pp. Caruga Aqua Ventures, New York. | spa |
dcterms.references | Timmons MB y Ebeling JM. 2010. Recirculating Aquaculture. NRAC Publication No. 401. Ithaca, NY, 948 pp | spa |
dcterms.references | Tzachi M, Samocha BA, Correia ES, Morris TC, Wilkenfeld JS. 2012. Growth performance of Litopenaeus vannameiin super-intensive mixotrophic raceway culture with zero discharge using Tareation® technology for aeration and extended CO2degassing.TexasAgriLife Research Mariculture Lab. at Flour Bluff, Corpus Christi, Texas. 45p | spa |
dcterms.references | Van Wik. P.M., 2001. Designing efficient indoor shrimp production systems: a bioeconomic approach. In Browdy, C.L., Jory.D.E. (Eds.), The New Wave, Proceedings of the Special Session on Sustainable Shrimp Farming, pp.285-291. World Aquacult. Soc, Baton Rouge, Luisana, 375p. | spa |
dcterms.references | Wasielesky, W.,Atwood, H., Stokes, A.,Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopnaeus vannamei. Aquaculture 258: 396-403. | spa |
dcterms.references | Xu, W.J., Pan, L.Q., Zhao, D.H., Huang, J. 2012b. Preliminary investigation into the contribution of floc on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zerowater exchange culture tanks. Aquaculture | spa |
dc.description.notes | Tesis (Acuicultura) - Universidad del Pacífico. Facultad de Ciencias y Tecnologías, 2016 | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Tecnólogo(a) en Acuicultura | spa |
dc.publisher.place | Colombia, Buenaventura | spa |
dc.publisher.program | Tecnología en Acuicultura | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Peces | spa |
dc.subject.proposal | Alimentos del mar | spa |
dc.subject.proposal | Acuicultura | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | spa |
dc.identifier.local | 14053 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.signature | T ACU 10 2016 | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |